High Temperature Accuracy Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Motorola's MPXV6115VC6U sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Motorola pressure sensor a logical and economical choice for the system designer.

The MPXV6115VC6U piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- Improved Accuracy at High Temperature
- 1.5% Maximum Error over 0° to $85^{\circ} \mathrm{C}$
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to $+125^{\circ} \mathrm{C}$
- Durable Thermoplastic (PPS) Surface Mount Package

Application Examples

- Vacuum Pump Monitoring
- Brake Booster Monitoring

Figure 1. Fully Integrated Pressure Sensor
Schematic

MPXV6115VC6U

NOTE: Pins $1,5,6,7$, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

MPXV6115VC6U

Freescale Semiconductor, Inc.
MAXIMUM RATINGS ${ }^{(1)}$

Parametrics	Symbol	Value	Units
Maximum Pressure (P1 > P2)	$\mathrm{P}_{\max }$	400	kPa
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40° to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	-40° to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
Output Source Current @ Full Scale Output ${ }^{(2)}$	$\mathrm{I}_{0}+$	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ${ }^{(2)}$	$\mathrm{I}_{0}-$	-0.5	mAdc

NOTES:

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
2. Maximum Output Current is controlled by effective impedance from $\mathrm{V}_{\text {out }}$ to G nd or $\mathrm{V}_{\text {out }}$ to V_{S} in the application circuit.

OPERATING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{P} 1>\mathrm{P} 2$.)

Characteristic		Symbol	Min	Typ	Max	Unit
Pressure Range		Pop	-115	-	0	kPa
Supply Voltage ${ }^{(1)}$		V_{S}	4.75	5.0	5.25	Vdc
Supply Current		I_{0}	-	6.0	10	mAdc
Full Scale Output ${ }^{(2)}$ @ $\mathrm{V}_{\mathrm{S}}=5.0$ Volts	$\begin{aligned} & \left(0 \text { to } 85^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{P}_{\text {diff }}=0 \mathrm{kPa}\right) \end{aligned}$	$\mathrm{V}_{\text {FSO }}$	4.534	4.6	4.665	Vdc
Full Scale Span ${ }^{(3)}$ @ $\mathrm{V}_{\mathrm{S}}=5.0$ Volts	(0 to $85^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {FSS }}$	-	4.4	-	Vdc
Accuracy ${ }^{(4)}$	(0 to $85^{\circ} \mathrm{C}$)	-	-	-	± 1.5	\% $\mathrm{V}_{\text {FSS }}$
Sensitivity		V/P	-	38.26	-	$\mathrm{mV} / \mathrm{kPa}$
Response Time ${ }^{(5)}$		t_{R}	-	1.0	-	ms
Warm-Up Time ${ }^{(6)}$		-	-	20	-	ms
Offset Stability ${ }^{(7)}$		-	-	± 0.5	-	\% $\mathrm{V}_{\text {FSS }}$

NOTES:

1. Device is ratiometric within this specified excitation range.
2. Full Scale Output ($\mathrm{V}_{\mathrm{FSO}}$) is defined as the output voltage at the maximum or full rated pressure.
3. Full Scale Span ($\mathrm{V}_{\mathrm{FSS}}$) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
4. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at $25^{\circ} \mathrm{C}$ due to all sources of error including the following:

- Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
- Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
- Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at $25^{\circ} \mathrm{C}$.
- TcSpan: Output deviation over the temperature range of 0° to $85^{\circ} \mathrm{C}$, relative to $25^{\circ} \mathrm{C}$.
- TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to $85^{\circ} \mathrm{C}$, relative to $25^{\circ} \mathrm{C}$.

5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
6. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
7. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

Figure 3. Typical Application Circuit (Output Source Current Operation)

Figure 2 illustrates the absolute sensing chip in the basic Small Outline chip carrier (Case 482).

Figure 3 shows a typical application circuit (output source current operation).

Figure 4. Output versus Absolute Pressure

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to $85^{\circ} \mathrm{C}$ temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The

MPXV6115VC6U pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Transfer Function (MPXV6115VC6U)
Nominal Transfer Value: $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{S}} \times(0.007652 \times \mathrm{P}+0.92)$
\pm (Pressure Error \times Temp. Factor $\times 0.007652 \times \mathrm{V}_{\mathrm{S}}$)
$\mathrm{V}_{\mathrm{S}}=5.0 \pm 0.25 \mathrm{Vdc}$

Pressure Error Band

ORDERING INFORMATION — SMALL OUTLINE PACKAGE

Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Marking
Ported Element	Vacuum, Axial Port	482 A	MPXV6115VC6U	Rails	MPXV6115V

SURFACE MOUNTING INFORMATION

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL OUTLINE PACKAGE

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to
a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

Figure 5. SOP Footprint (Case 482A)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION $0.15(0.006)$
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
6. ALL VERTICAL SURFACES 5° TYPICAL DRAFT.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.415	0.425	10.54	10.79
B	0.415	0.425	10.54	10.79
C	0.500	0.520	12.70	13.21
D	0.038	0.042	0.96	
G	0.100 BSC		2.54 BSC	
H	0.002	0.010	0.05	0.25
J	0.009	0.011	0.23	0.28
K	0.061	0.071	1.55	1.80
M	$0{ }^{\circ}$	7°	$0{ }^{\circ}$	7°
N	0.444	0.448	11.28	11.38
S	0.709	0.725	18.01	18.41
V	0.245	0.255	6.22	6.48
W	0.115	0.125	2.92	3.17

CASE 482A-01
ISSUE A

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA and the $(\mathbb{M}$ logo are registered in the US Patent \& Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2001.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
Technical Information Center: 1-800-521-6274
HOME PAGE: http://www.motorola.com/semiconductors/

